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Nonlinear heat flux dependence of pressure in nonequilibrium gases

R. E. Nettleton
Department of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa
(Received 27 June 1995; revised manuscript received 21 August 1995)

Dominguez and Jou [Phys Rev. E 51, 158 (1995)] have used the information theory to calculate pres-
sure P in a dilute gas with steady heat flow J. Their P has a JJ term, found here to be negligible in Ar at
0 K, except at very low density or high J. The statistical calculation could be modified, in conformity
with experiment or phenomenological requirements to reduce or eliminate this term.

PACS number(s): 05.70.Ln

Dominguez and Jou [1] have derived via the maximum
entropy formalism of Jaynes expressions exhibiting
dependence of pressure tensor P,z and internal energy on
heat flow J in a dilute gas for which number density n,
thermodynamic temperature 7, and J characterize a
nonequilibrium steady state with zero mass flow. Pres-
sure and thermodynamic potentials have contributions
O (J?) to which we try here to give a statistical interpre-
tation which goes beyond the discussion offered by these
authors.

The statistical method [2] calculates a phase space dis-
tribution p(x) which maximizes the entropy functional,

S =—Kfp(x)lnp(x)dx , (1)
where the integration is over phase space, subject to
7= [px)F(xdx , )
where the heat flux operator is
Fx=V1S 5 /m)(p?/2m)—h] , (3a)
i=1
h =(5/2)T . (3b)

h is the enthalpy per particle and V the system volume.
One obtains [1]

p=2Z ‘exp[—BA—pP-J], (4)
where Z normalizes p to unity. If we set B=(xT) ", sub-
stitution into (1) yields

TdS =dU +PdV +®-dJ . (5)

This is the extended thermodynamic Gibbs equation pro-
vided T is the empirically defined thermodynamic tem-
perature and ® the thermodynamic force associated with
J. @ is calculated to satisfy (2) identically, giving an
asymptotic expansion,
S=v,J+0(JY), (6a)
vo=—2Nm /{5(nkT)?} . (6b)

The pressure tensor is calculated by using p given by
(4) to average the operator,

Poy=(mv)~ Ep. pf . 7

i=1
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We obtain to O (J?)
Pog=[nkT+ {J*vonkT)*/(NmV)}18 5
+{9(nkT?/Q2NmV)}v§J ,J g . (8)

The trace of P in (8) is 3nk T, where Tk is the kinetic or
local equilibrium temperature and (3/2)kTx the mean
kinetic energy per particle. We have [1]

Ty =T[14+2mJ?/{5(nkT)*kT}]+0(J*) , (9a)
(1/3)TrPz=P=n«Tx , (9b)
—(@F /3V )7
=nkT[1—2mJ?/{5(nkT)*T}]1+0(J*)
=nkTx —2nx(Tx—T), (9¢)

where F is the Helmholtz free energy.

The question which now arises concerns the physical
and statistical meaning of Eq. (8). Assume that we per-
form expgriment 1 from which the data yield values of n,
T, and J. We can proceed via information theory to
make a statistical prediction (8) concerning the outcome
of experiment 2 which measures Pz, provided precau-
tions are taken to keep n, T, and J constant and equal to
the values measured in experiment 1. In an experiment
in which both traceless pressure P and J are measured,
they are independent variables and are not related by an
expression such as Eq. (8).

There is reason to believe that the O (J?) terms in (8)
and (9a) are of the order of the uncertainty in the statisti-
cal prediction. If the traceless pressure P was measured
in experiment 1, we should add to (9a) a term in P.P.
Similarly, additional terms, quadratic in the forces, will
appear in Ty —T for every additional independent vari-
able included [3]. Velasco and Garcia-Colin [4] have
shown that if we could measure in one experiment an
infinite number of moments of the single-particle distri-
bution, corresponding to an exact solution of the linear-
ized Boltzmann equation, we should predict T'=T¥.

We can estimate the magnitude of T'— T for Ar. At O
K, 1 atm, m =6.63X 10736 kg; n =2.69X10%/m3. If
the O (J?) contribution to thermal conductivity does not
materially change its order of magnitude, as will be
demonstrated in a later communication, we should need a

1241 ©1996 The American Physical Society



1242

temperature gradient J/A=7.32X10" K/m to make
[(T —Tx)/T|=0.001, which we could not easily achieve
in the laboratory. Since (T — Ty )/T is proportional to
(J /n)?, if n were two orders of magnitude smaller at the
same T, the required heat flux and temperature gradient
would be reduced by the same factor 0.01, but they would
still be very large. If n becomes so small that the predict-
ed (Tx —T)/T becomes appreciable, then higher terms in
the asymptotic expansion become significant. At the
same time, the prediction becomes more uncertain, and
thus less useful.

Aside from usefulness of the prediction, the thermo-
dynamic question raised by the result (8) is whether it is a
constitutive equation which we should substitute into,
e.g., the hydrodynamic equations in making an analysis
of experiment 1. In a fluid where the velocity gradient is
V@0, nonequilibrium thermodynamics has asserted
that P,;—P§,; is proportional to the traceless sym-
metrized velocity gradient tensor, or, where viscoelastici-
ty is observed, to a force or forces associated with shear
relaxation. These forces can be associated with an in-
dependent state variable such as P in a gas or with the
elastic strain in a dense fluid. However, such variables
are not measured in experiment 1, and so the correspond-
ing forces are absent from the description. Similarly,
P —P should be a sum of scalar forces associated with
compressional relaxation provided the rate equations for
these depend on V-u. Such variables are also not mea-
sured in experiment 1, implying, as V& —0, P=P and
P,5=P8,5 If Vil vanishes identically, this conclusion is
not necessary, but then the limit Vi/ —0 differs from the
case of strictly zero velocity gradient. We wish to inquire
whether information theory compels us to introduce such
a complication.

To answer this question, we observe that, in maximiz-
ing the entropy functional (1), we should include all “in-
formation” pertinent to the calculation we seek to make.
The Grad [5] and Chapman-Enskog [6] approaches to
transport in dilute gases successfully fit experiment by
neglecting T — Tk. In the relevant density-temperature
domain, there is experimental evidence that we can set
T =Tg: Since the usual phenomenology has set P=P,
we can introduce this as additional “information” in
maximizing the entropy functional. It has been pointed
out [7] that it is just as reasonable to modify Grad theory
to make it agree with the phenomenology as to require
that extended thermodynamics include all terms predict-
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ed by Grad. _
The requirement P=P can be incorporated into the
maximum entropy formalism by replacing (4) with

p=27""Vexp[ —BA —BD-T—BQ:P'] (10a)

N
Pog=T3 [ppPimkT)'=5,4] . (10b)

i=1

This adds a second-order tensor Hermite function to the

contracted third-order function J in the exponent. We
can use P’ because P is not measured in the experiment
we are analyzing. If we set

Q=wlJ , (11)
we can determine o to make P =P. We get

0=1227)?m /{25(nkT)*} . (12)

This modification of p adds a term —2nw(27) !/ 2JT to
P, but it does not change P, as a result of the orthogonali-

ty of P’ and J. To make Ty =T, we could add another
term to the exponent in (10a) involving a contracted
fourth-order tensor Hermite function and determine the
function which multiplies it, along with w, to make both
Tx=Tand P—P.

The JJ term in (8) appears to correspond to a similar
term previously derived via extended thermodynamics
for the pressure in a radiation field. The thermodynamic
derivations [8,9] introduce the Clausius-Duhem equation
as an entropy principle, viewing entropy as locally pro-
duced at a point in the field. This picture has been dis-
cussed by Essex [10], who points out that the entropy
production arises from surface absorption and emission
processes. It is highly nonlocal, e.g., in a model where we
have two parallel planar surfaces at different tempera-
tures which exchange energy through the radiation field
between them. In [1] a local temperature is introduced
which is not related to the physical processes of radiation
transfer and has no obvious operational definition. As
pointed out by Essex [10], such a picture is appropriate to
heat transfer in matter, but it seems to have no relevance
to a radiation field in the absence of matter. These con-
siderations make it doubtful that the usual nonequilibri-
um thermodynamics can provide reasons for the presence
of a JJ term in the radiation pressure. Such a term may
be justifiable empirically.
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